
Detection of Excess Arsenic-
Related Cancer Risks

Morales et al. (1) reanalyzed data from a
study in an arseniasis-endemic area of
Taiwan (2–5). Cancer risks for low-level
waterborne arsenic exposures were estimat-
ed using a variety of statistical models with
and without a comparison population.
Morales et al. (1) concluded that although
the shape of the exposure–response curve is
uncertain at low levels of arsenic exposure,
over a lifetime, one out of every 100–300
people who consume drinking water con-
taining 0.050 mg/L arsenic may suffer an
arsenic-related cancer (lung, bladder, or
liver cancer) death. Smith et al. (6) predict-
ed similar levels of arsenic risk. 

Morales et al. (1) noted that despite the
considerable uncertainties in the underly-
ing data, the risks are “sobering.” However,
they also concluded that the low concentra-
tions of waterborne arsenic in the United
States make it unlikely that such risks
would be detected by epidemiologic studies
(1), although they presented no calcula-
tions to support this conclusion. In review-
ing the results of Lewis et al. (7) in the
Millard County, Utah, study, the U.S.
Environmental Protection Agency made a
similar statement to the National Research
Council Subcommittee to Update the
1999 Arsenic Report (8), although without
listing their assumptions or showing a
power calculation. 

In the Millard County, Utah, study,
Lewis et al. (7) followed a cohort of 4,058
individuals exposed to waterborne arsenic at
levels of 0.014–0.166 mg/L. Expected death
rates were calculated using Utah death rates
for the same periods. No elevated death
rates from bladder, lung, or liver cancers
were observed for those who died through
November 1996, and death rates were not
higher in people with the highest levels of
drinking water arsenic. In fact, for bladder
and lung cancers, two cancer sites thought
to have the strongest association with
arsenic exposure, the authors observed 39
deaths when 63.5 were expected (p < 0.05).
These findings are not consistent with the
postulated excess risk for lung and bladder
cancers, nor do they support the concerns
that epidemiologic studies in the United
States are not sufficiently powerful to
detect the postulated arsenic-related health
risks.

One of the problems in interpreting
claims that studies in the United States lack
the power to detect expected health risks is
that these claims are made without present-
ing the assumptions and power calcula-
tions. Authors may assume that compliance

with the 1946 drinking water arsenic stan-
dard for interstate carrier water systems of
0.050 mg/L (9) is complete and that no
populations consume water above that
level. This is unfortunately not correct.
Several scientists have claimed that arsenic
health effects studies cannot be conducted
in the United States because of high rates
of migration; however, critics do not gener-
ally consider the assumed latency of the
effect. For example, if the latency is 20–30
years, as might be expected if arsenic is a
primary cause of cancer, the effect of
migration is likely to be large. Alternatively,
if only exposures that occur late in life are
important and the latency is 10–15 years,
as might be expected if arsenic is a late-
stage promoter of cancer (10–12), the
effect of latency might be small. Older peo-
ple have lower rates of migration than
younger people.

Our goal in this letter was to estimate
the sample size required to test the arsenic
risk predicted by Morales et al. (1) in the
United States. According to the National
Cancer Institute Surveillance, Epidemiology,
and End Results Program (13), the average
lifetime risk of dying from lung cancer for
males and females in the United States is
approximately 6.2%, whereas the average
lifetime risk of dying from bladder cancer is
approximately 0.46%. We made the fol-
lowing assumptions for two hypothetical
studies—one with a population exposed to
0.100 mg/L and one with a population
exposed to 0.050 mg/L:
• The added lifetime risk of death is 1 in

100 from consuming 0.050 mg/L and 1 in
50 from consuming 0.100 mg/L arsenic in
drinking water. 

• The arsenic-related cancer death risks are
equally divided between added bladder
and lung cancer death risks. 

• We assume that there is an equal number of
people in the cohort at background arsenic
levels (0.050 mg/L) and at the high water-
borne arsenic concentration (0.100 mg/L). 

We calculated sample sizes for a cohort
study using a published computer program
for power and sample size calculation (14).
Based on the above lifetime risks of death
from bladder and lung cancer, a power of
0.80, and a p-value of 0.05, we calculated
the sample sizes presented in Table 1. The
sample sizes were estimated based on rela-
tive risks presented by Morales et al. (1).

The sample sizes presented in Table 1
are based on an assumed lifetime cancer
death risk for the general population. Lewis
et al. (7), in their Utah study, included a
cohort of presumed nonsmokers. Whether
or not arsenic health risks are higher for
smokers (15) is an important consideration
when designing a study. The required sam-
ple size is smaller if the added risks are the
same for smokers and nonsmokers, and the
study could be restricted to nonsmokers, as
was generally the case for Lewis et al.’s
Utah cohort (7). Alternatively, if a study of
smokers is required (15), the background
risk of cancers is much higher and the
required sample size is much larger.

In addition, small relative risks, such as
those for lung cancer, are difficult to study
because of the potential effects of uncon-
trolled confounding. Investigators who
believe that U.S. populations cannot be
studied may have reached that conclusion
because they considered the combined
risks of bladder and lung cancer. We
would agree that a study of current lung
cancer risks in the general population
could be problematic for water arsenic
exposures of ≤ 0.050 mg/L. However, at
higher arsenic exposures a study might be
feasible because the sample size would be
considerably less. 

As mentioned above, specific assump-
tions about the magnitude of migration are
important because loss of cohort members
through migration would require an
increased sample size to offset the expected
losses. It is also essential to clearly specify
the goal of the epidemiologic study and the
outcomes of interest. Studies to better
understand the underlying mechanisms for
how arsenic causes or promotes the risk of
cancer may require a different design than a
study to validate or test the predicted
increased health risks from waterborne
arsenic exposure.
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Table 1. Sample sizes for each cohort.

RR Sample RR Sample
Exposure level bladder cancer size lung cancer size

0.050 mg/L 1.72 7,600 1.05 77,228
0.100 mg/L 3.17 1,371 1.16 8,051

RR, relative risk.
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Carcinogenicity of
Trichloroethylene

The possible carcinogenicity of trichloro-
ethylene (TCE) remains a controversy.

Over the past year the National Toxicology
Program’s Tenth Report on Carcinogens (1)
reaffirmed the classification of TCE as “rea-
sonably anticipated to be a human carcino-
gen.” In a recent review (2), we summarized
the results of published studies and con-
cluded that the evidence suggested an asso-
ciation between TCE exposure and kidney
and liver cancers, with somewhat weaker
evidence of an association between TCE
exposure and both Hodgkin’s disease and
non-Hodgkin’s lymphoma. We pointed out
that the data also suggested an association
between TCE exposure and cervical cancer,
although these data may have reflected expo-
sure to tetrachloroethylene rather than to
TCE because the observations of these can-
cers were mainly among dry cleaners. Others
challenged our findings (3,4).

Two studies, an occupational cohort
study by Hansen et al. (5) and a case–
control study by Pesch and et al. (6), have
appeared in the literature since the publica-
tion of our study (2); their findings provide
further support for the carcinogenicity of
TCE. The cohort study by Hansen et al.
(5) is similar to two other studies identified
in Tier I of our analysis (6,7); biomonitor-
ing of urinary trichloroacetic acid was used
to assess exposure to TCE. In Table 1 we
present the standardized incidence ratios
(SIRs) reported by Hansen et al. (5) for
those cancers we identified as most likely
associated with TCE exposure. Table 1 also
includes recalculated average relative risks,
which update the results of our previous
review (2).

For kidney cancer, Hansen et al. (5)
report a deficit of cases for males, an excess
for females, and a slight decrement for both
sexes combined. However, the relatively
small number of cases does not affect the
overall average relative risk in a substantial
way. As noted by Hansen et al. (5), among
others, the significance of the results hinge
on the inclusion or exclusion of the study
by Henschler et al. (11). 

The report of five liver and biliary can-
cers and an elevated SIR in this newest
study results in a larger and more precise
estimate of the average risk. Our follow-up
with Hansen revealed that the excess is
largely due to the three cases of biliary
cancer observed (10). Only two other
studies reported on biliary cancer (7,12),
and both reported an excess among TCE
exposed workers: Anttila et al. (7), SIR =
1.6; 95% CI, 0.4–4.0; four cases; and
Spirtas et al. (12): male; SMR = 2.4; 95%
CI, 0.9–5.2; six cases. For liver cancer
alone, the observation of Hansen et al. (5)
is consistent with our previous study (2)
and increases our concern that TCE may
cause liver cancer. 

A similar observation was seen for non-
Hodgkin’s lymphoma and cervical cancer.
The inclusion of the findings of Hansen et
al. (5) results in stronger and statistically sig-
nificant average relative risks for each of
these sites. Cervical cancer has a relatively
high 5-year survival rate (> 67%) (13), par-
ticularly if diagnosed early, and suggests
incidence as a more relevant end point. The
studies reviewed, including that of Hansen
et al. (5), show elevated incidence but not
elevated mortality for this cancer, support-
ing the possible carcinogenicity of TCE. No
cases of Hodgkin’s disease were observed by
Hansen et al. (5), and the average risk was
largely unchanged. 

The other notable finding in the study
by Hansen et al. (5) is the elevated and sta-
tistically significant risk for esophageal can-
cer. Previous studies have not reported on
the incidence of esophageal cancer, although
the reported risks for esophageal cancer mor-
tality are slightly elevated, particularly
among dry cleaners.

A second European study also is consis-
tent with a weak association between kidney
cancer (specifically, renal cell carcinoma)
and TCE exposure (6). In this multicenter
case–control study with 935 incident cases,
Pesch et al. (6) used a job exposure matrix
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Table 1. Mean SIRs, 95% CIs, and number of observed cases for selected cancer sites.

Cancer Hansen et al. (5) Wartenberg et al. (2) New calculationsa

type Mean SIR (95%CI) No. Mean SIR (95%CI) No. Mean SIR (95%CI) No. Conclusions

Kidney cancer 0.9 (0.2–2.6) 3 M 1.7 (1.1–2.7) 21 1.6 (1.1–2.4) 25 Small change; still strongly suggestive
2.4 (0.03–14) 1 F

Liver cancer 1.8 2 Mb 1.9 (1.0–3.4) 12 1.9 (1.1–3.2) 14 New data provide additional support
0.1 Expected Fb

Liver/biliary cancer 2.6 (0.8–6.0) 5 M 1.1 (0.3–4.8) 4 2.0 (1.0–4.3) 9 New data provide additional support
0.4 Expected F

Hodgkin’s disease 0.5 Expected M 1.5 (0.6–3.7) 4 1.5 (0.6–3.7) 4 Small change; still suggestive overall
0.1 Expected F —

Non-Hodgkin’s lymphoma 3.5 (1.5–6.9) 8 M 1.5 (0.9–2.3) 22 1.9 (1.3–2.8) 30 New data provide additional support
0.3 Expected F —

Cervical cancer 3.8 (1.0–9.8) 4 F 2.4 (1.2–4.8) 8 F 2.7 (1.6–4.8) 12 F New data provide additional support

Abbreviations: CI, confidence interval; F, female; M, male.
aAll average risks except those for kidney cancer are homogeneous based on the Q-test for homogeneity (p > 0.2) (9). bData from Hansen (10).
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and a job task exposure matrix to categorize
exposure. Odds ratios were 1.1–1.3 for men
and 0.8–1.8 for the smaller population of
women.

In summary, we see the findings of
Hansen et al. (5) and Pesch et al. (6) as pro-
viding additional support of our previous
findings, which suggest that TCE exposure
causes cancer in humans. Although alterna-
tive explanations, such as confounding and
chance due to multiple comparisons, are
possible explanations for this set of studies,
as noted by Hansen et al. (5), we find it
unlikely in light of the number of cases of
cancer and sizes of the relative risks.
Moreover, only a small number of subjects
in the study by Hansen et al. (5) experienced
TCE exposures at levels higher than the cur-
rent permissible level (14), suggesting that
excess cancer risks observed in this cohort
study may be associated with low-level
exposures to TCE.

The views in this letter are those of the
authors and do not necessarily reflect the views
or policies of the U.S. Environmental
Protection Agency.
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N-Acetyltransferase 2
Polymorphism in Patients
with Spanish Toxic Oil
Syndrome

Ladona et al. (1) reported on the possible
relationship between several genetic poly-
morphisms that regulate enzymatic activities
involved in the processing of multiple xeno-
biotics and the risk of Spanish toxic oil syn-
drome (TOS). TOS, a disease that affected
several thousand Spaniards 20 years ago,
was attributed to the ingestion of adulterat-
ed rapeseed oil. Ladona et al. (1) reported
an excess of N-acetyltransferase 2 (NAT2)
slow-acetylation alleles and, consequently,
an excess of slow acetylator genotypes in
long-term survivors of this syndrome when
they were compared to a group of “friends”
(i.e., not consanguineous subjects living in
the same area) but not when they were
compared to siblings who were not affected
by the syndrome. 

In this setting, I find that the frequency
of NAT2*4 (wild type) normal allele report-
ed in the “friends” control group is exceed-
ingly high (0.38) when compared to that
found in previous studies in Spanish and in
other Caucasian populations (2,3); the
results in these studies are in concordance
with the proportion of slow acetylator phe-
notypes found in the same populations
(4,5). Could this difference be due to the
small number of subjects included in the
control groups studied by Ladona et al. (1)? 

In contrast, if the differences between
patients and controls were actually due to
an excess of slow acetylators among
patients, this could reflect that slow acetyla-
tion serves a protective role. These subjects

are long-term survivors of the syndrome,
and it is possible that rapid acetylators had
a higher risk of dying in the acute phase of
the disease. 

In 1981 we used sulfamethazine as an
enzyme-specific substrate (6) to determine
the acetylator phenotype in 83 Spanish
patients (36 males, age 46.8 ± 16.7 years,
mean ± SD) suffering TOS in its acute
phase and in 157 normal controls (7). All
subjects were from the same geographic
area (Madrid, Spain) and ethnic origin
(white Spaniards) as those studied by
Ladona et al. (1). Results of our study (7)
are shown in Table 1. We found no differ-
ences in the distribution of both pheno-
types between cases and controls, with
almost identical frequencies for slow acety-
lator individuals in both subgroups. These
frequencies are also consistent with those
reported for the Spanish and other Caucasian
populations (4,5). 

Ladona et al. (1) reported that the fre-
quency of the m2 allele (i.e., NAT2*6) in
patients (0.32) was higher than that found
in both control groups. Fretland et al. (8)
have demonstrated that there are quantita-
tive and qualitative differences in the meta-
bolic activity of the enzymatic proteins
coded by NAT2-mutated slow-acetylator
alleles. Thus, it may be hypothetized that a
selective affinity exists between any toxic
component of rapeseed oil and any of the
mutated slow-acetylator alleles. 
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Table 1. Acetylator phenotype in patients with
toxic oil syndrome and in normal controls.

Slow Rapid 
Group (n) acetylators (%) acetylators (%)

Patients (83) 55 45
Controls (157) 57 43
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Use of Reporter Genes and
Vertebrate DNA Motifs in
Transgenic Zebrafish as
Sentinels for Assessing
Aquatic Pollution

In a recent paper in EHP, Mattingly and co-
workers (1) showed that dioxin-treated
transgenic zebrafish [having 1,905 bp of 5´
flanking region of the human CYP1A1 gene,
driving the jelly fish green fluorescent pro-
tein (GFP) reporter gene] displayed
inducible GFP in the eye, nose, and vertebra
of embryos 48 and 72 hr after fertilization.
They first confirmed in zebrafish liver cells
that zebrafish transcription factor proteins
[e.g. the aromatic hydrocarbon receptor
(AHR) and its heterodimeric binding part-
ner the AHR nuclear transporter (ARNT)]
must be capable of recognizing and binding
to human aromatic hydrocarbon response
elements (AHREs) present in the CYP1A1
5´ flanking region.

We wish to point out that we have done
similar experiments, although they were not
cited by Mattingly et al. (1). We first made
plasmid constructs using mammalian or
trout response elements to drive the firefly
luciferase (LUC) reporter gene and showed
that transient transfection of the zebrafish
ZEM2S cell line with these reporter con-
structs imparts dose-dependent gene induc-
tion upon exposure to a variety of chemicals
(2,3). Using the golden mutant zebrafish,
which has a decrease in interfering pigmen-
tation, we then developed transgenic fish in
which vertebrate DNA motifs that respond
to selected environmental pollutants are
capable of activating a reporter gene that
can be easily assayed; details of our successes
and failures in trying to generate stably
transformed transgenic zebrafish cell lines
have been reported (4). The expression of
transgenes in zebrafish in our hands has
been quite difficult to maintain past the F1
generation, although some laboratories have
been more successful (5). However, the
short generation time (12 weeks), long life
span (2–3 years), and relatively small
diploid genome make the zebrafish a very
attractive experimental model system.

We began with three DNA motifs that
recognize three important classes of foreign
chemicals (2). AHREs respond to numer-
ous polycyclic hydrocarbons and halo-
genated coplanar molecules such as
2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD; dioxin) and polychlorinated

biphenyls. Electrophile response elements
(EPREs) respond to quinones and numer-
ous other potent electrophilic oxidants.
Metal response elements (MREs) respond
to heavy metal cations such as mercury,
copper, nickel, cadmium, and zinc. We
first established that zebrafish transcription
factors are able to recognize mammalian or
trout AHRE, EPRE, or MRE sequences in
a dose-dependent and chemical-class–
specific manner, and that expression of
both the GFP and LUC reporter genes are
easily detected in zebrafish cell cultures (2)
and in intact live zebrafish (4). As antici-
pated, some agents gave a response to only
one of the three classes, whereas others
gave a mixed (AHRE- plus EPRE-mediat-
ed or MRE- plus EPRE-mediated)
response. We are extending these studies to
include estrogen response elements (EREs)
to detect the effects of environmental
endocrine disruptors, and retinoic acid
response elements (RARE, RXRE) to
detect the possible effects of retinoids in
the environment. 

A very important aspect of this assay is
its sensitivity due to the property of biocon-
centration that is exhibited to varying
degrees in all fish species. Each environmen-
tal pollutant is known to be bioconcentrat-
ed; for example, 10–17 M TCDD in a body
of water is concentrated 100,000 times (6)
to approximately 10–12 M TCDD in a fish,
where it would act upon the AHRE motif
and turn on the GFP or LUC reporter gene.
Variations in sensitivity of this model sys-
tem can also be achieved by increasing the
copy number of response elements and per-
haps by altering the sequence of each core
consensus response element and flanking

regions. This transgenic technology should
allow for a simple, exquisitely sensitive, and
inexpensive assay for monitoring aquatic
pollution.
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CLARIFICATION

In the December 2001 Forum article “Old Pesticides Pose New Problems for Developing
World” [EHP 109:A578–A579], the partnership behind the Africa Stockpiles Project was
not clearly defined. The Africa Stockpiles Project is an initiative of the World Wildlife
Fund and Pesticide Action Network UK that is now being developed by a strategic part-
nership consisting of African regional organizations (the African Union, the United
Nations Economic Commission for Africa, the African Development Bank, and Pesticide
Action Network Africa), United Nations agencies (the Food and Agriculture
Organization of the United Nations, the United Nations Environment Programme, the
United Nations Industrial Development Organization, the Secretariat of the Basel
Convention), the World Bank, and the industry association CropLife International.




